
Synchronization in
cache-coherent architectures

Performance enhancement by reducing bus traffic

Lagani • Micera • Miliani

Lagani • Micera • Miliani

Outline

● Introduction

● Snooping-based protocols

● Synchronization
○ Lock acquisition problem

○ Atomic instructions

○ Test-and-set: lock contention problem

○ QL and QOLB

2

Lagani • Micera • Miliani 3

Introduction

Lagani • Micera • Miliani

Introduction

4

Lagani • Micera • Miliani

Write-through cache

5

Lagani • Micera • Miliani

Bottleneck

6

Lagani • Micera • Miliani

Write-back cache

7

Lagani • Micera • Miliani

Write-back cache

8

Lagani • Micera • Miliani

Write-back cache

9

Lagani • Micera • Miliani

Incoherence

10

Lagani • Micera • Miliani 11

Snooping based
protocols

Lagani • Micera • Miliani

Snooping based protocols
● Cache controllers (snoopers) snoop bus transactions to

maintain coherency.
● Two possible behaviours when a cache block is modified:

○ Write-update
○ Write-invalidate

12

Lagani • Micera • Miliani

Write-update protocol
● Writing processor’s snooper propagates the updated cache block
● Other snoopers snoop the new cache block and update their own

cache block copy

13

Lagani • Micera • Miliani

● Writing processor’s snooper propagates the updated cache block
● Other snoopers snoop the new cache block and update their own

cache block copy

Write-update protocol

14

Lagani • Micera • Miliani

● Writing processor’s snooper propagates the updated cache block
● Other snoopers snoop the new cache block and update their own

cache block copy

Write-update protocol

15

Lagani • Micera • Miliani

● Writing processor’s snooper propagates the updated cache block
● Other snoopers snoop the new cache block and update their own

cache block copy

Write-update protocol

16

Lagani • Micera • Miliani

Write-update protocol

17

● Writing processor’s snooper propagates the updated cache block
● Other snoopers snoop the new cache block and update their own

cache block copy

Lagani • Micera • Miliani

● Writing processor issues an invalidation signal just for the first
write

● All other snoopers invalidate their own cache block copy

Write-invalidate protocol

18

Lagani • Micera • Miliani

● Writing processor issues an invalidation signal just for the first
write

● All other snoopers invalidate their own cache block copy

Write-invalidate protocol

19

Lagani • Micera • Miliani

● Writing processor issues an invalidation signal just for the first
write

● All other snoopers invalidate their own cache block copy

Write-invalidate protocol

20

Lagani • Micera • Miliani

● Writing processor issues an invalidation signal just for the first
write

● All other snoopers invalidate their own cache block copy

Write-invalidate protocol

21

Lagani • Micera • Miliani

● Writing processor issues an invalidation signal just for the first
write

● All other snoopers invalidate their own cache block copy

Write-invalidate protocol

22

Lagani • Micera • Miliani

Update vs invalidate: bus transactions

23

● How many transactions do these protocols require?

● Write-run:
○ Set of consecutive writes from the same processor which ends

with a read or write from another processor
○ Let Wr be the average number of writes in it

● Let also n be the average number of operations made by other
processors on the same cache block after each write-run

Wi R/Wj1 R/Wj2 R/WjnRi

…. …. ….

i-th processor’s write-run External R/W operations next write-run

time

Wi Wi Wi Wi Wi WiRi

 time window

Lagani • Micera • Miliani

Update vs invalidate: cost evaluation

24

● Cu: updating message cost

Write-update Write-invalidate

● Wr write transactions ● 1 invalidation message
● n misses

○ Each operation after the
write-run will cause a miss

● Ci: invalidation message cost

● Average write-invalidate cost per time window

○ CInvalidate = Ci + n * Cu

● Average write-update cost per time window

○ CUpdate = Wr * Cu

Lagani • Micera • Miliani

● Write-invalidate outperforms write-update when:

Update vs invalidate: cost evaluation

25

CInvalidate < CUpdate

Ci + n * Cu < Wr * Cu

Wr > n + Ci / Cu

● The best protocol to use depends on Wr and n

Lagani • Micera • Miliani

Update vs invalidate: which is better

Write-invalidate
● Better to use when the

write-run is long

● Misses will have to be
served synchronously,
hence they cannot be
delayed

26

Write-update
● Better to use when there’s

high contention between
processors

● Block updates are
asynchronous and can be
delayed

Lagani • Micera • Miliani

Invalidate vs. update evaluation: traffic

27

Fatahalian, K. (2017). Snooping Cache Coherence: Part II - CMU 15-418: Parallel Computer Architecture and Programming.
 Available at http://15418.courses.cs.cmu.edu/spring2017/lecture/cachecoherence1/slide_041

● Simulated 1 MB cache, 64 B lines

Lagani • Micera • Miliani

Typical commercial solutions
● Most of the commercial multiprocessors use:

○ Write-Back caches
■ to reduce bus traffic
■ they allow more processors on a single bus

○ Write-Invalidate protocol
■ to preserve bus bandwidth

● Typical write-back/write-invalidate protocols:
○ MOESI
○ MESIF

28

Lagani • Micera • Miliani

MOESI in AMD and ARM

29

● Current AMD and ARM cache coherence implementations use
MOESI protocol

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/cortex_a73_trm_100048_0002_05_en.pdf

http://support.amd.com/TechDocs/24593.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/cortex_a73_trm_100048_0002_05_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/cortex_a73_trm_100048_0002_05_en.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

Lagani • Micera • Miliani

MESIF in Intel

30

● Another cache coherency protocol developed by Intel

● Uses state F instead of state O

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Lagani • Micera • Miliani

Synchronization

31

Lagani • Micera • Miliani

Multiprocessor synchronization

32

● Concurrent processes may want to
○ access shared data (or acquire a physical resource) concurrently
○ coordinate their progress relative to each other

● This implies that concurrent processes must be synchronized
○ Cooperation among processors (e.g. Producer–Consumer

relationship)

Final result is A + 1 instead of A + 3.

Lagani • Micera • Miliani

Lock acquisition problem
● Synchronization quite often implies the acquisition and release

of locks
● These primitives are used by sync libraries which allow

developers to write something like:

● Waiting algorithms:
1. Busy waiting
2. Blocking

● Acquisition process must be atomic

33

Lagani • Micera • Miliani

Test-and-set
● Test-and-set is an atomic operation that atomically reads the value of

a memory location and writes 1 in it
● In early implementations, the operation was performed by blocking the

bus for all the duration of the instruction, but there is a more efficient
solution based on cache coherence:
○ Reads the lock value
○ Sets it to 1 anyway

■ If, in the meantime, the copy was invalidated → another
processor got the lock → returns 1

■ Returns the lock initial value otherwise

34

Lagani • Micera • Miliani

Other implementations

35

● Other test-and-set generalizations

○ Exchange-and-swap

○ Compare-and-swap

● Fetch-and-Θ operation is a generic name for:
○ Fetch-and-increment
○ Fetch-and-add
○ …

● Its use it’s way more simpler than the test-and-set
○
○
○ …

Lagani • Micera • Miliani

Test-and-set: lock contention problem
● Lock contention in spinning locks implementation
● The first processor that wants to acquire a lock succeeds and

caches the lock in a line in the modify (M) state
● The first processor that requests the lock subsequently will get a

copy of the lock and test it (unsuccessfully)
○ A write operation is always performed due to the test-and-set

implementation: it will then invalidate the holder cache block
copy

○ The processor keeps its cached copy in the M state
● The last processor that requests the block will have the unique

copy of it in the M state.
● All requesters are repeatedly trying to read and modify the lock,

which is in the M state in another cache.

36

Lagani • Micera • Miliani

Test-and-set: lock contention problem
● Lock contention in spinning locks implementation
● The first processor that wants to acquire a lock succeeds and

caches the lock in a line in the modify (M) state
● The first processor that requests the lock subsequently will get a

copy of the lock and test it (unsuccessfully)
○ A write operation is always performed due to the test-and-set

implementation: it will then invalidate the holder cache block
copy

○ The processor keeps its cached copy in the M state
● The last processor that requests the block will have the unique

copy of it in the M state.
● All requesters are repeatedly trying to read and modify the lock,

which is in the M state in another cache.

37

Problem: heavy bus utilization

Lagani • Micera • Miliani

Test-and-set lock performance

38

Fatahalian, K. (2017). Snooping Cache Coherence: Part II - CMU 15-418: Parallel Computer Architecture and Programming.
 Available at http://15418.courses.cs.cmu.edu/spring2017/lecture/synchronization/slide_023

Critical section
time removed so
graph plots only
acquiring and
releasing lock time

Lagani • Micera • Miliani

First solution: queueing locks
● Let n be the number of processors
● Contention can be reduced by having requesting processors enter

a n bits long FIFO queue
○ Each bit represents the lock state for each processor

each lock bit must be in a different cache line, otherwise the lock contention problem appears
again

○ Initially the first element contains a “free lock” flag, so the first
processor can acquire the lock

39

Lagani • Micera • Miliani

First solution: queueing locks
● A processor requesting the lock will perform:

● After this function call:
○ is 0
○ is 1

40

Lagani • Micera • Miliani

First solution: queueing locks
● The processor reads and caches it

○ its value is 0, so the processor can enter the critical section
○ otherwise it would have continued spinning

41

Lagani • Micera • Miliani

First solution: queueing locks
● The processor, once it entered the critical section, sets his

lock state to 1 to make it busy for the next round

42

Lagani • Micera • Miliani

First solution: queueing locks
● At the end of its critical section, the processor releases the

lock to the next processor, by setting
 to 0

43

Lagani • Micera • Miliani

First solution: queueing locks
● The write operation will invalidate the line containing the lock in the

cache of the processor corresponding to myindex + 1.
○ This will generate a read miss for the latter, and upon reading of its flag,

its test will be successful.

44

Lagani • Micera • Miliani

Software implementation of QL

45

Lagani • Micera • Miliani

Queuing Locks: pros & cons
● Advantages:

○ Reduced bus traffic

● Drawbacks:
○ Relying on fetch-and-increment
○ Each lock must be in a different cache line (distributed

lock), or contention will occur while performing
fetch-and-increment.
■ No shared data coallocation

46

Lagani • Micera • Miliani

Second solution: QOLB
● Completely in hardware (Queue On Locked Bit)
● Hardware queue of waiting processors’ IDs
● Only one lock variable

○ Enqueue operation allocates a shadow copy of the line containing the
lock in the processor’s cache

○ Spinning is performed in cache if the lock bit is set to busy
○ When the processor holding the lock releases it, it performs a

dequeue operation that directly sends the freed lock and the data
in the same line to the next waiting processor

● Pro: QOLB outperforms other schemes
● Cons: Significant complexity cost

○ Further complications in coherence protocols
○ Direct transfer from one cache to another is required

47

Lagani • Micera • Miliani

References
● Jean-Loup Baer, Microprocessor Architecture: from Simple Pipelines to Chip

Multiprocessor
● Hennessy & Patterson, Computer Architecture, 5th edition
● http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.c

ortexa73/index.html
● http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled/2
● http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Prod

uct-Family
● https://en.wikipedia.org/wiki/MOESI_protocol
● https://en.wikipedia.org/wiki/MESIF_protocol
● http://www.realworldtech.com/common-system-interface/5/
● http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronizati

on/16_synchronization_slides.pdf
● https://it.wikipedia.org/wiki/Memoria_cache#Protocolli_di_Coerenza
● http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921

48

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled/2
http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled/2
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
https://en.wikipedia.org/wiki/MOESI_protocol
https://en.wikipedia.org/wiki/MOESI_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
http://www.realworldtech.com/common-system-interface/5/
http://www.realworldtech.com/common-system-interface/5/
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
https://it.wikipedia.org/wiki/Memoria_cache#Protocolli_di_Coerenza
https://it.wikipedia.org/wiki/Memoria_cache#Protocolli_di_Coerenza
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921

Lagani • Micera • Miliani 49

Any questions?

Lagani • Micera • Miliani 50

Thank you for your
attention

