Synchronization in
cache-coherent architectures

Performance enhancement by reducing bus traffic

|

Lagani « Micera « Miliani

Outline

e |[ntroduction
e Snooping-based protocols
e Synchronization
o Lock acquisition problem
o Atomic instructions

o Test-and-set: lock contention problem

o QL and QOLB

Lagani * Micera « Miliani 2

—

Introduction

Introduction

Processor Processor Processor Processor
L1 Cache L1 Cache L1 Cache L1 Cache
Internal CPU Bus

L2 Shared Cache

External Bus

Main Memory

Lagani * Micera « Miliani 4

Write-through cache

Processor Processor Processor Processor
L1 Cache L1 Cache L1 Cache L1 Cache
Internal CPU Bus

L2 Shared Cache

v External Bus

Main Memory

Lagani * Micera « Miliani 5

Bottleneck

Processor Processor Processor Processor

L1 Cache L1 Cache L1 Cache L1 Cache

Qtemal CPU Bus >

L2 Shared Cache

External Bus

Main Memory

Lagani * Micera « Miliani

Write-back cache

Processor Processor Processor Processor

VY|V ¥ s

L1 Cache L1 Cache L1 Cache L1 Cache

Internal CPU Bus

L2 Shared Cache

External Bus

Main Memory

Lagani * Micera « Miliani 7

Write-back cache

Processor Processor Processor Processor

V¥ V¥ Cwrites,

L1 Cache L1 Cache L1 Cache L1 Cache

Internal CPU Bus

Write back operation

L2 Shared Cache

v External Bus

Main Memory

Lagani * Micera « Miliani 8

Write-back cache

Processor Processor Processor Processor

VY|V ¥ s

L1 Cache L1 Cache L1 Cache L1 Cache

Internal CPU Bus]
Write back operation

L|2 Shared Cache

Block replacement ‘ 7 External Bus

Main Memory

Lagani * Micera « Miliani 9

Incoherence

Processor Processor Processor Processor
VL ‘L ¢ Multiple
\ / ¢ writes N / N /
L1>€1e L1 Cache L1>€le LT%e
7 7 N N
Internal CPU Bus

Write back operation

L|2 Shared Cache

Block replacement ‘ 7 External Bus

Main Memory

Lagani * Micera « Miliani

—

Snooping based
protocols

Snooping based protocols

e (Cache controllers (snoopers) snoop bus transactions to
maintain coherency.

e Two possible behaviours when a cache block is modified:
o Write-update
o Write-invalidate

L1 Cache

Processor L2 Shared Cache
Snooper
L1 Cache

Processor Main Memory
Snooper

Lagani * Micera « Miliani

Write-update protocol

e \Writing processor’'s snooper propagates the updated cache block
e Other snoopers snoop the new cache block and update their own
cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper

Lagani * Micera « Miliani

Write-update protocol

e \Writing processor’'s snooper propagates the updated cache block
e Other snoopers snoop the new cache block and update their own
cache block copy

Processor Processor Processor

Write
hit
L1 Cache . L1 Cache . L1 Cache .

Snooper Snooper Snooper

Lagani * Micera « Miliani

Write-update protocol

e \Writing processor’'s snooper propagates the updated cache block
e Other snoopers snoop the new cache block and update their own
cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper

>

Updated cache block propagation

Lagani * Micera « Miliani

Write-update protocol

e \Writing processor’'s snooper propagates the updated cache block
e Other snoopers snoop the new cache block and update their own
cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper Updated
. . cache
f‘ 4‘ block

shoop

Lagani * Micera « Miliani

Write-update protocol

e \Writing processor’'s snooper propagates the updated cache block
e Other snoopers snoop the new cache block and update their own
cache block copy

Processor Processor Processor

L1 Cache . L1 Cache . > L1 Cache . Cache

Snooper Snooper Snooper

Lagani * Micera « Miliani

Write-invalidate protocol

e \Writing processor issues an invalidation signal just for the first
write
e All other snoopers invalidate their own cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper

Lagani * Micera « Miliani

Write-invalidate protocol

e \Writing processor issues an invalidation signal just for the first
write
e All other snoopers invalidate their own cache block copy

Processor Processor Processor

Write
hit
L1 Cache . L1 Cache . L1 Cache .

Snooper Snooper Snooper

Lagani * Micera « Miliani

Write-invalidate protocol

e \Writing processor issues an invalidation signal just for the first
write
e All other snoopers invalidate their own cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper

—

Invalidation message

Lagani * Micera « Miliani

Write-invalidate protocol

e \Writing processor issues an invalidation signal just for the first
write
e All other snoopers invalidate their own cache block copy

Processor Processor Processor
L1 Cache . L1 Cache . L1 Cache .
Snooper Snooper Snooper S
Invalidation
* * message
snoop

Lagani * Micera « Miliani

Write-invalidate protocol

e \Writing processor issues an invalidation signal just for the first
write
e All other snoopers invalidate their own cache block copy

Processor Processor Processor

L1 Cache . L1 Cache . L1 Cache .
> > Invalidation

Snooper Snooper Snooper

Lagani * Micera « Miliani

Update vs invalidate: bus transactions

e How many transactions do these protocols require?

I-th processor’s write-run External R/W operations next write-run
@i Wi Ri Wi Wi\ G/Wj1 R/Wj2 R/Wj? /Wi Wi Ri Wi A
N 4 N S N\ y
- time window > time

e Write-run:

o Set of consecutive writes from the same processor which ends
with a read or write from another processor
o Let W be the average number of writes in it
e Let also n be the average number of operations made by other
processors on the same cache block after each write-run

Lagani * Micera « Miliani

Update vs invalidate: cost evaluation

Write-update Write-invalidate
e W write transactions e 17 invalidation message
® /N Misses

O Each operation after the
write-run will cause a miss

e C :updating message cost e C.invalidation message cost

e Average write-invalidate cost per time window

—_— *
CInvalidate B Ci al Cu
e Average write-update cost per time window

—_— *
© CUpdate_Wr Cu

Lagani * Micera « Miliani

Update vs invalidate: cost evaluation

e \Write-invalidate outperforms write-update when:

C

<
Invalidate CUpdate

C.+n*C,<W *C,

Wr>n+Ci/Cu

e The best protocol to use depends on W_and n

Lagani * Micera « Miliani

Update vs invalidate: which is better

Write-invalidate Write-update
e Better to use when the e Better to use when there’s
write-run is long high contention between
e Misses will have to be Processors
served synchronously, e Block updates are
hence they cannot be asynchronous and can be
delayed delayed

Lagani * Micera « Miliani

Invalidate vs. update evaluation: traffic

e Simulated 1 MB cache, 64 B lines

25 fesesne e

[
(=]

—
Wi

Upgrade rate, update rate (%)
Upgrade rate, update rate (%)

e
A

0 [| |
Inv Upd Inv Upd Inv Upd Inv Upd
LU Ocean Ray Trace Radix Sort

Fatahalian, K. (2017). Snooping Cache Coherence: Part Il - CMU 15-418: Parallel Computer Architecture and Programming.
Available at http://15418.courses.cs.cmu.edu/spring2017/lecture/cachecoherence1/slide_041

Lagani * Micera « Miliani

Typical commercial solutions

e Most of the commercial multiprocessors use:
o Write-Back caches
m to reduce bus traffic
m they allow more processors on a single bus
o Write-Invalidate protocol
m to preserve bus bandwidth

e Typical write-back/write-invalidate protocols:
o MOESI
o MESIF

Lagani * Micera « Miliani

MOESI in AMD and ARM

e Current AMD and ARM cache coherence implementations use
MOESI protocol

7.3 Memory Coherency and Protocol

Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol 1s also used to maintain
coherency between all processors in a multiprocessor system. The cache-coherency protocol
supported by the AMDG64 architecture 1s the MOESI (modified, owned, exclusive, shared, invalid)

protocol. The states of the MOESI protocol are:
http://support.amd.com/TechDocs/24593.pdf

6.5.1 Data cache coherency

The Cortex-A73 processor uses the MOESI protocol to maintain data coherency between multiple cores.

MOESI describes the state that a shareable line in a L1 data cache can be 1n:
http://infocenter.arm.com/help/topic/com.arm.doc.100048 0002 05 en/cortex a73 trm 100048 0002 05 en.pdf

Lagani * Micera « Miliani

http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/cortex_a73_trm_100048_0002_05_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100048_0002_05_en/cortex_a73_trm_100048_0002_05_en.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

MESIF in Intel

e Another cache coherency protocol developed by Intel

e Uses state F instead of state O

With the introduction of the Intel® QuickPath Interconnect protocol the 4 MESI states
are supplemented with a fifth, Forward (F) state. for lines forwarded from on socket to

another.
https://software.intel.com/sites/products/collateral/hpc/vtune/performance analysis quide.pdf

Lagani * Micera « Miliani

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

—

Synchronization

Multiprocessor synchronization

e Concurrent processes may want to
o access shared data (or acquire a physical resource) concurrently
o coordinate their progress relative to each other
e This implies that concurrent processes must be synchronized
o Cooperation among processors (e.g. Producer—Consumer
relationship)

CPU 1 Memory CPU 2

A

|
‘ b CPU 1 reads A

|
2. CPU 2 reads AJ

< ~
4. CPU 1 writes A + 1 3. CPU 2 writes A+ 2 \
Bus

Final result is A + 1 instead of A + 3.

Lagani * Micera « Miliani

Lock acquisition problem

e Synchronization quite often implies the acquisition and release
of locks

e These primitives are used by sync libraries which allow
developers to write something like:

while(!acquire(lock)) { waiting algorithm }
Computation on shared data

release(lock)

e \Waiting algorithms:
1. Busy waiting
2. Blocking

e Acquisition process must be atomic

Lagani * Micera « Miliani

Test-and-set

e Test-and-set is an atomic operation that atomically reads the value of
a memory location and writes 1 in it
e In early implementations, the operation was performed by blocking the
bus for all the duration of the instruction, but there is a more efficient
solution based on cache coherence:
o Reads the lock value
o Setsitto 1 anyway
m If, in the meantime, the copy was invalidated — another
processor got the lock — returns 1
m Returns the lock initial value otherwise

loop: test-and-set R2,
bnz R2,
1d R1,
addi R1,
st R1,
st RO,

lock //
loop //
A //
R1, 1 //
A //
lock //

test and set the value in location lock
if the result is not zero, spin

the lock has been acquired

increment A

store A

release the lock; RO contains ©

Lagani * Micera « Miliani

Other implementations

e Other test-and-set generalizations
o Exchange-and-swap
o Compare-and-swap

e Fetch-and-O© operation is a generic name for:
o Fetch-and-increment
o Fetch-and-add
O
e |Its use it's way more simpler than the test-and-set
o fetch-and-increment A

o fetch-and-add A, R1
O

Lagani * Micera « Miliani

Test-and-set: lock contention problem

e Lock contention in spinning locks implementation
e The first processor that wants to acquire a lock succeeds and
caches the lock in a line in the modify (M) state
e The first processor that requests the lock subsequently will get a
copy of the lock and test it (unsuccessfully)
o A write operation is always performed due to the test-and-set
Implementation: it will then invalidate the holder cache block
Ccopy
o The processor keeps its cached copy in the M state
e The last processor that requests the block will have the unique
copy of it in the M state.
e All requesters are repeatedly trying to read and modify the lock,
which is in the M state in another cache.

Lagani * Micera « Miliani

Test-and-set: lock contention problem

e Lock contention in spinning locks implementation
e The first processor that wants to acquire a lock succeeds and
caches the lock in a line in the modify (M) state
e The first processor that requests the lock subsequently will get a
copy of the lock and test it (unsuccessfully)
o A write operation is always performed due to the test-and-set
Implementation: it will then invalidate the holder cache block
Ccopy
o The processor keeps its cached copy in the M state
e The last processor that requests the block will have the unique
copy of it in the M state.
e All requesters are repeatedly trying to read and modify the lock,
which is in the M state in another cache.

Problem: heavy bus utilization

Lagani * Micera « Miliani

Test-and-set lock performance

20
Benchmark executes: oy .
lock(L); Critical section

18 critical-section(c) tlme removed SO
unlock(L);

16 - graph plots only

14 acquiring and

releasing lock time

Time (us)
I

V Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

o
|

Not shown: bus contention also slows
4r down execution of critical section

2
0'/1/ 1 1 1 L 1 | I l I | 1 | I]

3 5 7 9 11 13 15
Number of processors

Fatahalian, K. (2017). Snooping Cache Coherence: Part Il - CMU 15-418: Parallel Computer Architecture and Programming.
Available at http://15418.courses.cs.cmu.edu/spring2017/lecture/synchronization/slide_023

Lagani * Micera « Miliani

First solution: queueing locks

e Let nbe the number of processors
e Contention can be reduced by having requesting processors enter
a n bits long FIFO queue

o Each bit represents the lock state for each processor

each lock bit must be in a different cache line, otherwise the lock contention problem appears
again

o Initially the first element contains a “free lock” flag, so the first
processor can acquire the lock

n bits
|

\
/

flag

n—» O

tail=0

Lagani * Micera « Miliani

First solution: queueing locks

e A processor requesting the lock will perform:
my index = fetch-and-increment(tail)
e After this function call:
o my _indexis O
o tailis 1

flag | O|11(1]1 111

Lagani * Micera « Miliani

First solution: queueing locks

e The processor reads flag[my index] and caches it
o its value is 0, so the processor can enter the critical section
o otherwise it would have continued spinning

L1 Cache

Processor

Lagani * Micera « Miliani

First solution: queueing locks

e The processor, once it entered the critical section, sets his
lock state to 1 to make it busy for the next round

L1 Cache

Processor

flag

Lagani * Micera « Miliani

First solution: queueing locks

e At the end of its critical section, the processor releases the
lock to the next processor, by setting
flag[(my _index + 1) % n]toO

L1 Cache

Processor

flag | 1|0 1]1 111

Lagani * Micera « Miliani

First solution: queueing locks

e The write operation will invalidate the line containing the lock in the

cache of the processor corresponding to myindex + 1.

o This will generate a read miss for the latter, and upon reading of its flag,
its test will be successful.

L1 Cache L1 Cache

Processor

flag | 10|11 111

Lagani * Micera « Miliani

Software implementation of QL

init: flag[@] := @; // Initially, 1st processor can have the lock
for(i:= 0; i < n; i++) // All other processors will see a busy lock
flag[i] := 1;
tail := 0;
acq: myindex := fetch-and-increment(tail); // Increment is modulo n

while(flag[myindex] == 1); // Spins while the lock is held elsewhere

// The processors gots the lock and makes it busy for the next round
flag[myindex] := 1;

rel: // Releases the lock and passes it on the next processor
flag[(myindex + 1) % n] := ©;

Lagani * Micera « Miliani

Queuing Locks: pros & cons

e Advantages:
o Reduced bus traffic

e Drawbacks:
o Relying on fetch-and-increment
o Each lock must be in a different cache line (distributed
lock), or contention will occur while performing
fetch-and-increment.
m No shared data coallocation

Lagani * Micera « Miliani

Second solution: QOLB

e Completely in hardware (Queue On Locked Bit)
e Hardware queue of waiting processors’ IDs
e Only one lock variable
o Enqueue operation allocates a shadow copy of the line containing the
lock in the processor’s cache
o Spinning is performed in cache if the lock bit is set to busy
o When the processor holding the lock releases it, it performs a
dequeue operation that directly sends the freed lock and the data
in the same line to the next waiting processor

e Pro: QOLB outperforms other schemes
e Cons: Significant complexity cost
o Further complications in coherence protocols
o Direct transfer from one cache to another is required

Lagani * Micera « Miliani

References

e Jean-Loup Baer, Microprocessor Architecture: from Simple Pipelines to Chip
Multiprocessor

Hennessy & Patterson, Computer Architecture, 5th edition
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.c
ortexa73/index.html
http://www.anandtech.com/show/10347/arm-cortex-a/73-artemis-unveiled/2
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Prod
uct-Family

https://en.wikipedia.org/wiki/MOESI_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
http://www.realworldtech.com/common-system-interface/5/
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronizati
on/16_synchronization slides.pdf

https://it.wikipedia.org/wiki/Memoria cache#Protocolli di _Coerenza
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921

Lagani * Micera « Miliani

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa73/index.html
http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled/2
http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled/2
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
http://ark.intel.com/products/series/53672/Intel-Xeon-Processor-E7-8800-Product-Family
https://en.wikipedia.org/wiki/MOESI_protocol
https://en.wikipedia.org/wiki/MOESI_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
http://www.realworldtech.com/common-system-interface/5/
http://www.realworldtech.com/common-system-interface/5/
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
http://15418.courses.cs.cmu.edu/spring2017content/lectures/16_synchronization/16_synchronization_slides.pdf
https://it.wikipedia.org/wiki/Memoria_cache#Protocolli_di_Coerenza
https://it.wikipedia.org/wiki/Memoria_cache#Protocolli_di_Coerenza
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676921

—

Any questions?

—

Thank you for your
attention

